Micromechanical modeling of talc particle reinforced thermoplastic polymers
نویسندگان
چکیده
منابع مشابه
Micromechanical modeling of fiber reinforced pervious concrete composites
Pervious concrete is widely used in today’s construction industry, e.g.. parking lots, airport runways, etc. However, the durability and strength of the porous concrete remains a challenge, as the binding material proportion is low and the use of fi ne aggregates is nearly 0. Increasing the compressive load, the failure appears fi rst in the weak concrete zone induced by the random distribution...
متن کاملUnderstanding Rheology of Thermoplastic Polymers
1 AAN013 shear rate behavior. For example, gauge variation can be caused by variable post-extrusion die swell, and warpage can occur from non-uniform relaxation during cooling of an improperly formulated injection molding compound. Also, by testing at low enough shear rates so that the measurements are in the melt’s linear viscoelastic region, the data can be linked directly to the polymer’s mo...
متن کاملProperties of agave fiber reinforced thermoplastic composites
Biocomposites have attracted a great deal of interest in research and industry sectors because they are typically lightweight, sustainable, environmentally friendly, and their thermomechanical properties can be designed to fit specific applications by tuning of their composition. In this study, mechanical properties of natural-fiber reinforced thermoplastic composite films were explored. Thermo...
متن کاملOverview of Flax Fiber Reinforced Thermoplastic Composites
Flax fibres are oftenly used for reinforcing thermoplastic to manufacture biocomposite materials exhibiting numerous advantages such as high mechanical properties, low density and biodegradability. The mechanical properties of a biocomposite material depends on the nature and orientation of the fibres, the nature of the matrix and mainly on the adhesion between fiber and the polymer matrix. The...
متن کاملMicromechanical analysis of nanoparticle-reinforced dental composites
The mechanical behavior of TiO2 nanoparticle-reinforced resin-based dental composites was characterized in this work using a three-dimensional nanoscale representative volume element. The impacts of nanoparticle volume fraction, aspect ratio, stiffness, and interphase zone between the resin matrix and nanoparticle on the bulk properties of the composite were characterized. Results clearly demon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2010
ISSN: 1617-7061
DOI: 10.1002/pamm.201010139